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1. INTRODUCTION

When fitting a function in two or more independent variables to a surface,
the number of basis functions which make up the approximating model can
be very large. The resulting system of equations, whose solution is the
desired coefficients, is equally large. Solution of such a large system of
equations requires sizable amounts of computer memory and time. A method
of reducing these requirements is desired.

Standard least-squares curve and surface fitting techniques can be found,
for example, in Draper and Smith [1]. There appear to have been two basic
approaches to reducing computer memory and computation time require~

ments. The first involves the. use of matrix Kronecker products. The second,
in the special case of two independent variables, involves the repeated
application of simple curve fitting techniques.

Building on the multivariate interpolation work of Davis [2], Greville
has implied that if the grid of base points is a Cartesian product of one~

dimensional grids and the basis functions are separable, then the use of
Kronecker products results in a decrease in computation time. Clenshaw
and Hayes [4] show that a multiple regression (two independent variables)
can be accomplished by repeated application of a single regression curve
fitting routine. This second approach saves on both computer memory
computation time. In an interesting applications paper, Cornish [5]. uses a
compact two-sided matrix notation for adjusting an original model
include additional independent variables. He shows that this notation, when
applicable, results in savings in computation time over that required to
complete a new multiple regression analysis with the full set of independent
variables.

In this paper it is shown that the technique suggested by Clenshaw and
Hayes [4] can be generalized to k independent variables. With some accom~

panying restrictions on the data grid, this results in a significant reduction
in computer memory and computation time. The new algorithm is not
restricted to the use of orthogonal basis functions.
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Definitions and some preliminary results are presented in Section 2. In
Section 3 the last-squares normal equations are written in a compact matrix
notation using Kronecker products. It is assumed in this derivation that
the basis functions are separable. The algorithm for surface fitting by separa­
tion is then developed in Section 4. This development is made possible by
combined use of a two-sided matrix notation similar to that of Cornish [5]
and the Kronecker product of matrices. However, the final algorithm does
not require the formation of Kronecker products. Finally, an approximate
comparison of the regression techniques mentioned above is given in Sec­
tion 5.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let Xi be the ith independent variable and Xi;. be the jith value of Xi .
The Xu., i = I, ... , k andji = I, ... , ri , are termed base points. Let the fitting
functio~, g(x) be a linear combination of n basis functions, fl . Then

n

g(x) = g(x1 , ..• , Xk) = I adl(x1 , ••• , Xk)'
I~l

(I)

If the fl are separable (can be written as a product of functions, each in a
single variable), we have h(x1 , ... , Xk) = n:~d~/i)(Xi)' where nli ) is the
lith function in the ith independent variable. The functions f~/i) will be
termed constituent functions. If ni is the number of constituent functions in
the ith variable (note that n:~l ni = n), and if the coefficients are given
additional subscripts to indicate exactly which product of constituent func­
tions they multiply, Eq. (I) can be rewritten

nl nk 1c

g(x) = I··· I al1".lk TI.fi(li}(Xi)'
11~1 Ik~l i~l

(2)

Polynomials provide a good example, in which case n1;l(Xi) = X~i-l.

Let the Kronecker, or direct, product of two matrices A and B be defined

A X B = {ai;B}.

M. C. Pease [6] proves the following:

THEOREM 1. If A, B, C, and D are matrices having dimensions which
make the products AC, BD, and (A X B)(C X D) meaningful, then

(A X B)(C X D) = AC X BD.

Corollary 1.1 follows without difficulty.
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COROLLARY 1.1. For matrices of appropriate dimensions
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l
fll f12
f21= .

fn1

The interested reader may verify the following:

THEOREM 2. Let M' denote the transpose of matrix M. Then

(A X B)' = A' X B'.

3. THE LEAST-SQUARES NORMAL EQUATIONS

At the jth observation, let flj be the value of the lth basis function and
let Yj be the observed value. Based on the model given by Eq. (1), it is a
well-known result [1] that the least-squares normal equations, whose solution
for the ai provides the desired coefficients, can be given in matrix form
follows

l
fll f12 ... IIrllfll f21 ... fn1ll a

11
~1 : ~2 : (
. . .

In1 fnr f1r Inr an

~1rll;:1 '
fnr Yr

where n is the number of basis functions and r is the number of base points.
Defining matrices in the obvious manner, Eq. (3) is more simply written

F'FA =F'Y.

Now consider the case where the functions fl are separable and g(x) is
given by

n

g(x) = I adb)
1~1

nl nk k

= I ... I alc'lk TIf~(li)(XJ,
11~1 lk~1 i=1
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where ni is the number of constituent functions in the ith variable and k is
the number of independent variables. Let f~~i) = fFi)(Xij). Then, if ri is the
number of base points in the ith variable and'if observed 'values are available
for each combination of base points, Eq. (4) becomes

where

If some observed values are missing, those holes can be filled using a proce­
dure described by Cadwell [7]. Using the corollary to Theorem 2, followed
by Corollary 1.1 of Theorem 1, Eq. (6) becomes

(F1'F1 X F2'F2 X ••• x Fk'Fk)A = (F1' x F2' X ... X Fk')Y. (7)

It should be further observed (though it is not obvious) that if we let

a l ···lll a l ···ll2

a l ···121

d= al···lnk_ll

a l ···2ll

a l "'221

anl·· ·nk_2nk_ll

and

YI"'lll YI'''ll2

YI···121

qy= YI"'lrk_ll

YI···2ll

YI···221

Y rl·· ·rk-2rk-ll

then Eq. (7) can be rewritten

(F1'F1 X .• , X F~-IFk-l) dFk'Fk = (F1 ' X ... x Ffc-l) qyFk . (8)
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Note that for k = 2 Eq. (8) is particularly compact. Eq. (8) will now be
used to derive the final results.

4. SURFACE FITTING BY SEPARATION

We first consider the case k = 2. Then Eq. (8) is simply

(9)

Note that the solution of the equations represented by (9) can be obtained
by first solving

(10)

for !!J and subsequently solving

(11)

for d. Equation (10) is a collection of '2 normal equations for '2 curve
fits in Xl , one for each of the curves of constant X 2 • Each curve fit uses the
same approximating model. The matrix !!J is made up of the various coeffi­
cients. Equation (11) is another collection of normal equations, this time
for nl curve fits in X2 , one for each coefficient of the model used to approxi­
mate the curves of constant X2 • Hence it is seen that the surface fit (k = 2)
is performed by first fitting a family of curves in Xl to lines of constant X2 ,

and subsequently obtaining curves in X2 for each of the coefficients of the
model in Xl'

It will now be shown that given 'k surface fits (one for each base point
in the kth variable) in k - 1 independent variables, the surface fit in k
independent variables is properly obtained by fitting a function in Xk to
each coefficient of the surface fit in k - I independent variables. Simply
let the matrix FI of the preceding discussion be replaced by the Kronecker
product Fl x F2 X ... X Fk- l and let F2 be replaced by Fk . Then since the rk
surface fits in k - 1 independent variables are given, the values of matrix !JIJ
in the equation

(FI X F2 X .. , X Fk-I)'(FI X F2 X .. , x Fk_I )!J9 = (FI x F2 X ... x Fk_1Yi{Y
(12)

are known. The equation analogous to Eq. (11) is then

(13)

which is precisely the set of normal equations for the previously mentioned
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curve fits. By induction on k the result can be carried to any finite number of
independent variables.

Assuming that the dependent data is initially arranged in the k-dimensional
array qy, whose vectors are of the form:

lY;';' jm-l 1 jm+1 ...

AJYh j 2 jm-l 2 jm+1 ... 1k

Yhj 2 jm-l rm jm+1 jk

The above results can be summarized mathematically in the following:

Algorithm. A least-squares surface fit to a set of points in k independent
variables, where the values of the independent variables are chosen in a
rectangular grid, can be obtained by the following:

(1) Let m = 1.

(2) For each combination of the subscriptsjl ,j2 ,···,jm-l ,jm+1 ,.. ·,jk'

(
. f I to ni i < m)
li ranges rom 1 t . .

o ri 1 > m

(a) Perform. a bivariate least-squares regression analysis using
the vector (Xml, Xm2 ,... , Xmr )' as the independent data and
the vector mlY,,', jm-l 1 jm+1

j'JYhj 2 jm-l 2 jm-l 17<

Yjlj2 jm-l rm jm+1 .. , jk

as the dependent data.

(b) Letting the regression coefficients be hi , i = I, ... , nm , replace
the element Yj j ••. j ij ••• j by hi , i = I, ... , nm •

1 2 m-1 m+l k

(3) Letm=m+l.

(4) If m ~ k go to step 2.

(5) The element Yj j .•. j of the k-dimensional array qy is the regression
1 2. k

coefficient offihlf~h) ... f~k).

If desired, weights can be introduced into the above analysis in a straight­
forward manner.
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5. COMPARISON OF METHODS
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An approximate comparison will now be made between the three multiple
regression techniques mentioned in the introduction. These three techniques
are:

1. Standard multiple regression (see [In,
2. Kronecker product method (see Eq. (7)),
3. Surface fit by separation (see Section 4 for algorithm).

These three methods are compared on the basis of computer time and
memory. To do this, each method is applied to a multiple least-squares
regression using n constituent functions and r basis points in each of k
independent variables. All three systems are solved by LL' decomposition
and back substitution.

Forsythe and Moler [8] give the approximate number of arithmetic
operations for LL' decomposition of an n X n matrix as n3/6, and for back
substitution as n2• Therefore, the arithmetic operations and memory require­
ments can be estimated from

(
Method 1)
Standard

(
Method 2)
Kronecker

(
Method 3)
Separation

# of Operations = tn3k + n2k

Memory = (n k + l)(r k + 1) - 1

# of Operations = ikn3 + n2k + L:~2 n2i

Memory = (n k /2)(n k + 3) + r k

# of Operations = tkn3 + k(k - 1) n2

Memory = nk + ric + nr.

It is evident that as k increases, the difference between the three approaches

TABLE I

Comparison of Multiple Regression Methods

Conditions/method

A. k = 2, n = 5, r = 10
1. Standard
2. Kronecker
3. Separation

B. k = 4, n = 8, r = 15
1. Standard
2. Kronecker
3. Separation

Computation time
(sec)

3.2 X 10-2

1.3 X 10-2

0.4 X 10-2

11,463
23.8
0.43

Memory
(words)

2625
450
175

207,414,721
8,445,377

54,841
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becomes more significant quite rapidly. Assuming an average rate of 1 J1-sec/
operation, the three methods are compared in Table I at two different sets
of values for k, nand r.
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